GENERALIZATION OF EINSTEIN’S IDEA OF THE PHOTOELECTRIC WORK FUNCTION: EXAMPLE FROM SCANDINAVIAN CLIMATE DATA

GENERALIZATION OF EINSTEIN WORK FUNCTION (11FEB14)

ON THE GENERALIZATION OF EINSTEIN’S IDEA OF THE PHOTOELECTRIC WORK FUNCTION: EXAMPLE FROM SCANDINAVIAN CLIMATE DATA

A linear law, with a nonzero intercept c, of the type y = hx + c = h(x – x0), is often observed when we analyze our (x, y) observations on a number of complex systems. The climate system data is considered here for illustrative purposes. The nonzero c in such a law is like the nonzero work function W, conceived by Einstein, in 1905, to explain the photoelectric effect. Einstein’s law was thus able to explain the cut-off frequency observed experimentally by Lenard.  Likewise, there is a cut-off x0 = -c/h. The photoelectric law implies a movement of the empirical observations along a family of parallel lines. A similar movement along parallels is observed if we analyze our (x, y) observations carefully. The method of deducing the existence of such parallels is also discussed and is traced to the method used by Millikan to determine the two universal constants: the absolute magnitude on the charge q on a single electron and the Planck constant h.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s